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An analog of the theorem of D. Jackson on the approximation of periodic
functions by means of trigonometric polynomials is established for some Hardy
spaces of several variables. ,( 1987 Academic Press. Inc

An important result in the theory of approximation is the theorem of
D. Jackson:

Iff is a 2n-periodic function on R with continuous derivatives up to the kth
order, then for every n > 0 there exists a trigonometric polynomial P of
degree at most n, such that

Sup If(xl~P(x)1 ~CI1 ' Sup Sup I t/',f(x+hl- d',f(Xll·
,E R 1/,1 11/, cRt!., dx

This theorem has been generalized and extended to various classes of
functions and moduli of continuity of arbitrary order (see, for example,
[4]). In particular, Storozenko has proved an analog of the above
inequality for the classical Hardy spaces on the unit disc of the complex
plane (see [12,13]). In this paper we are concerned with an extension of
Jackson's theorem to other Hardy spaces of several variables. Our main
interest is in approximating distributions in HP( R N

), 0 < P < + 00, by
means of entire functions of finite exponential type (the analog in R N of the
trigonometric polynomials). However, we shall be able to prove a theorem
of Jackson type in HP(R N

) only after having established an analog of this
theorem for Hardy spaces on polydiscs and on some tube domains of e v.

Section 1 of this paper contains the notation and some preliminary
material which is also of some independent interest. In particular, we
establish a Poisson type summation formula between Hardy spaces on the
polydisc UN = {ZE eN: IZil < I}, and Hardy spaces on the poly-half-space
D N = {z E eN: 1m. Zi> O}. In Sections 2, 3, and 4 we state a theorem of
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Jackson type for Hardy spaces on UN, D N, and RN, respectively. The proof
of this theorem in HP( UN) is essentially that of Storozenko for HP( U). The
proof in HP(D N) and HP(RN) follows from the result in HP( UN) and some
transference methods. Finally, in Section 5 we study the approximation
properties of the Riesz means in Hardy spaces.

1. HARDY SPACES OF SEVERAL VARIABLES

Let UN = {z = (z 1 , ... , Z N) E eN: Iz;1 < I} be the unit po1ydisc in eN, and
let TN = {z = (z 1,"" Z N) E eN: Iz)1 = I} be its distinguished boundary, the
N-dimensional torus.

The Hardy space HP( UN), 0 < p ~ +00, is the set of all ho10morphic
functions I on UN for which

( )

1'"

Ilfll W(U') = Sup J.. If(rz)I" dz < + 00
0.:0; r < 1 1-\

(see [7,8]).
The po1ydisc is closely related to another domain in eN. Let D N= {z =

(z I, ... , ZN) E eN: 1m. Z; > O} be the poly-half-space in eN. If (R + )N denotes
the set {Y=(Yl""'YN)ERN:y;>O}, then D N is the tube domain
RN+ i(R+ )N.

The Hardy space H"(D N
), O<p~ +00, is the set of all holomorphic

functions I on D N for which

(see [11]).
Finally, we also introduce a "real" Hardy space. The Hardy space

HP(R N), 0 <p < +00, is the set of all harmonic functions I on
R~+ 1= RN

X R+, for which

1II11 HP(RN) = (LN I,~~ II(x, y)W dxYiP < +00

(see [3,9, and 11]).
Although defined on different domains, the three Hardy spaces HP( UN),

HP(D N), and HP(R N), are closely related and share many important
properties. Perhaps the best way to see this is to look at the Fourier trans
form. Let us start by considering the relation between HP(R N) and HP(DN).

If I is in HP(RN) (resp. HP(D N)), then Limy ~ 0 fi', y) (resp. Limy ~ 0

f( . + iy)) exists in the topology of tempered distributions on RN
. Let us
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denote this limit by the same letter'/; and let us denote by I the Fourier
transform of this tempered distribution. In the sequel we shall make no dis
tinction between a function I and the associated (boundary value) tem
pered distributionj: The support of the Fourier transform of a distribution
in HP(R N

) can be all of R N
• On the contrary, if this distribution is in

HP(D N
), then its Fourier transform has support contained in ~v

However, apart from this important difference, most of the properties of
the Fourier transform of distributions in HP(R N

) are also valid for the
Fourier transform of distributions in HP(D N

). This is a consequence of the
following theorem of Carleson [2].

THEOREM 1.1: Let I he in HP(D N
), O<p< +XJ. Then I is also in

HP(R N
), and IIIII/lP(RNI~clllllwlDvl' Vice versa, let {mil he afinite C'

partition ol unity of R N
- {O}, such that every m i is homogeneous of degree

zero and has support contained in a rotation of (R + )N. Then, every I in
HP(R N

) can he decomposed as I= I,.{;, where f = mj If (Jj E SO(N) is
suitahly chosen,./;U (J; is in HP( D N

), and 11f; (J;II /lPW' I ~ cIIIII /lPf R' I'

An immediate consequence of this theorem is the fact that every mul
tiplier operator bounded on HP(R N

) is automatically bounded also on
HP(D N

). Moreover, the decomposition of (a tempered distribution) f in
HP(R N

) into a sum of (boundary values of) functions holomorphic in tube
domains in C N expressed by this theorem preserves the smoothness proper
ties of f We shall make use of these observations in the sequel.

So much for the spaces HP(R N
) and HP(D N

). We want to consider now
the relation between HP(D N

) and HP(U N
). The case of interest for us is

when 0 < p ~ J. In this case a Poisson type summation formula between
these two spaces holds.

Let QN={X=(x1, ... ,XN)ER'v: -1/2~x;<~} be the unit cube in R N

Then QN can be naturally identified with the torus TV via the map
(XI'"'' x N )---> (eCrri\I, ... , ecrrh ,), and the Lebesgue measure dx on QV

corresponds to the normalized Haar measure dz on TV

THEOREM 1.2. If f is in HP(D N
), O<p~ I, deline l(z)=Lkl(k)zk

(k = (k I,..., k N) is a multi-index, and Zk = z1 1 • ... • z~'). Then 1is in HP( U v ),

and 1111Iw(UNI~ IlfllwlD'I' Vice versa, if t is a positive real numher, and

f'() Nf( I) h I" . HP(D N) d L' N(I liP)II!11. I z = t . t z, t en. , IS In , an Im''(l t . , HPIl'1 =

II f II I/PID'I'
The inequality 11111 WI [i' I~ II f IlwJ/)' 1 generalizes the classical Poisson

summation formula between Fourier series and integrals. The converse
identity Lim,~otN(1 I:P111],llwll"I= II fll IfP(/).' , is in some sense motivated
by the following heuristic argument: The Fourier transform of/~ is lu· ).
Hence l,(e Crrix" ... , e Crrix ,) = Lk IUk) e crrltk ,- 1 " and if { is small, this sum is
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similar to the integral t - NLR,)N J( 0 e2ni~ ,-l<d~ = f,(x). But Ilftll }{P(DN) =
tNt lip - I) II f II HP(D")!

Proof of the theorem. First notice that since f is in HP(D N) with°< p ~ 1, the Fourier transform J of f is a continuous function supported
in (R + )N, and J has at most a polynomial growth: IJ(OI ~
eIIfll }{p(DN) I~ IN( Ijp- I) (see [11, 14], and Theorem 1.1). This implies
that 1 is well defined, and is a hoiomorphic function on UN. Let
z = (z I"'" ZN) E UN, and, if every zi is different from zero, write
z/=e"ni(\/+il/I, with XEQN and YE(R+)'v. Then, since the function
fl' +iy) is in LI(R N), and (f(. +iy))'(~)=I(Oe-2n\, (see [11]), we
have l(z) = Lk fix + iy + k), by the classical Poisson summation formula.
Hence,

~I f ,If(x+ iy +kW dx= f ,If(x + iyW dx.
k Q' R'

Taking the supremum with respect to Y E (R +)N on both sides of this
inequality we obtain 11/11 HP(UN ) ~ Ilfll HP(DN).

Let us prove the converse. Let f(x)=Limv~of(x+iy). Then
Limr~J,(r(e2nix',... ,e2niX'))=t NLkf(t l\:+t Ik) '(this serIes IS
almost everywhere absolutely convergent), and to prove that
L· N(l-- IIP)II? II 11/"1 .. h h hIm{~ot )( HP(U') = , I }{P(DN) It IS enoug to s ow t at

Limt-Nf ,IIf(t-1x+t-Ik)IP dx=f If(xWdx.
I ~o Q" k RN

But

If( t I x W - I If( t - I X + t - I k W
",,,0

~ I~ f( t - I X + t - I kf
~ If(tlxW+ L If(t-1x+t-1kW,

k",O

and since

t Nf IfU IXW dx = f If(xW dx
Q" { 'QX

---> f If(xW dx
R N

as t ---> 0,
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1 v J .. I IfU Ix + 1 I k W' dx ~ I
(! \ k "" (j 'I \!

t,
If(x)ll'dx

---> 0 as 1---> 0,

the desired result follows. I

2. THE JACKSON THEOREM FOR THE POLYDISC

Let f be a function in HP( UN). The best approximation of f by
polynomials of degree at most n in the HP-metric is defined by

E(n, f; HP( UN)) = Inf Ilf- pll HPJ UNi'
P

where p(z) = Llkl,;; n p(k) Zk is a polynomial of degree at most n. Let rn be a
nonnegative integer, and let t and u be real numbers, with t > O. Define

and

UJ'IIU,f, HP(U
N

))= Sup, IIA;;'fillfl'u.\j'
IllloS-.'\/ 1_,

THEOREM 2.1. If f is in HP( UN), 0 < P ~ +:x:, then for every positive
integer n we have E(n,f, HP(UN))~cUJm(1/n,f,HP(UN)).

The case p ~ 1 of this theorem is well known (see [4]), and the case
p< 1 is due to Storozenko (see [12,13] for N= 1, and [16] for arbitrary
N). Actually, our proof of this theorem is a simple extension of the
I-dimensional proof in [13]; we reduce the problem to one dimension by
means of the slices of the function f

Sketch of the proof Let a. > -1, and define

P(z)
r(n+1)r(a.+1)

r(n + a. + 1)

m .(rn) 1/2 .. (1_(re2rriUr+l)'+1 .
Xi~1 (-)I j LI/2f((re21rlU)lz) 1_re2rriu (re

21rlU
)-lIdu.
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Then it is possible to verify that P is a polynomial of degree at most n, and,
if'Y. is big enough and r = I - lin,

The details are as in [13]. I

COROLLARY 2.2. Let rjJ be a eX-function on R N with compact support,
and such that rjJ(n= I if I~I ~ 1. If f(z) = Lk j(k) Zk and s > 0, define

(/J, * f(z) = L rjJ(sk)j(k) Zk.

k

Suppose that f is in HP( UN). Then also (/J s * f is in HP( UN), and

Ilf- (/J, * fll HP( UN) ~ CWm(S, f, HP( UN)).

Obviously this corollary holds under more general conditions on the
function rjJ. However in this case the proof is immediate, and in the next
section we shall need only this weaker result.

Remark. We stated the theorem for the polydisc, but the same proof
holds for other bounded balanced domains D in eN (a domain D in eN is
called balanced if wz E D whenever zED, WEe, and Iwi ~ 1). It is also
interesting to notice that although the distinguished boundary of D has real
dimension at least N, in the proof of the theorem we used only difference
operators along the direction determined by the slices of D,
D~ = {wz E eN: WEe, Iwi ~ I}. In this context see also [8].

3. THE JACKSON THEOREM fOR THE POLy-HALf-SPACE

Let f be a function in HP(D N
). The best approximation of f by entire

functions of exponential type at most s is defined by

E(s, f, HP(D N
)) = Inf Ilf- gil HP(D N ),

K

where g is an entire function of exponential type at most s. Let m be a non
negative integer, t be a positive real number, and let h be a vector in R N

with all entries equal, i.e., h = u( I,..., 1) for some real number u. Define

L1; f(z) = f (- )m- j (rr:) f(z +jh),
j~O }

and

Wm(t,f, HP(D N
)) = Sup 11L1; fll HP(D N ).

Ihl,,; t
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THEOREM 3.1. Iff is in Hp(D N), O<p~ +XJ, then for every .1'>0 we
have E(s I,f Hp(DN))~cwm(s,IHP(D N)).

Again, the case p? I of this theorem is well known (see [4,6]), so that
we shall consider only the case 0 < p ~ 1. We first need a couple of easy
lemmas. We recall thatj;(.:-)=t Nf(t 1.:-) andJ(.:-)=L:J(k).:-k.

LEMMA 3.2. wm(s, fl' HP(D N)) = tN(I;p Ilwm(t IS, j; HP(D N)).

Proof This lemma is an immediate consequence of the identity
II IrII HP(O') = tNt 1/1' 1IIIfllllPW'I'

LEMMA 3.3. If h = (I, ... , I) ERN, and .1', u are real numbers, with .I' > 0,
then (,1:~f)- = ,1;;'] and Wm(S, 1, HP( UN)) ~ wm(s, j; HP(D N)).

Proal The identity (,1;;;,/)-= ,1;;'] is an immediate consequence of
the equations (,1;;'ff(O = (e 27Tih c-I )1111(0 and ,1;;,:k = (e27TlUlkl_ 1)111 :k.
The inequality wm(sJ,HP(UN))~wm(s,f;HP(DN))is an immediate con
sequence of the equation (,1;;;,f)- = ,1;;'] and Theorem 1.2.

Proof of the Theorem. As we said before, we consider only the case
O<p~ 1. Let rP be a C"-function on R N, with support in gER N; I~I ~2},

and such that rP(O= I if I~I ~ 1. Iff is in HP(D N
) define

so that (<P, *fn0 = rP(sOl( ~). Then <P, *f is an entire function of
exponential type at most 2.1' I, and, by Corollary 2.2 and Lemmas 3.2 and
3.3, for every t > °we have

liZ - (<PH */; )-11 Hr'(c', ~ CWm(st,fr' Hf'( UN))

~ CWm(st, f;, HP(D N))

= ctN(I/p I IWm(S, j; HP(DN)).

From this inequality and Theorem 1.2 we obtain

Ilf- <P, *fll HP( 0" I= Lim ["Ii I 11f' IIIZ - (<P" *f,)-lllIP(l\ I
t----J.O

and this proves the theorem. I

We conclude this section by stating a second theorem of Jackson type
concerning the relation between the best approximation of functions in
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HP(D N
) by entire functions of finite exponentional type and the moduli of

continuity of the derivatives of such functions.
Let rt. be a real number. The Bessel potential rf of a tempered

distribution I is defined via the Fourier transform by Wf((O =
( I - I(1 2) ,/2!( (). When rJ. > 0, r'f is a sort of fractional derivative of f,
and indeed one can pass from the Bessel potential to the derivatives via
"nice" multiplier transformations (for example see [4 or 9J).

THEOREM 3.4. IfrJ. ~ 0, and if I ~f is in HP(D N
), 0 <p ~ +a::;, then also

I is in HP(D N
) and £(.1'-1,./; HP(D N

)) ~ cs' wm(s, I ~r, HP(D N
)).

We notice that Theorem 3.1 is a particular case (rJ. = 0) of this theorem.
Actually it is also possible to prove an analog of this theorem with the
derivatives {i)k/i,::kf} instead of the Bessel potential I ~l

Proof of the Theorem. Let ¢ and rt>, *I be defined as in Theorem 3.1.
Then since the support of (I-¢(s')) is contained in {(ERN: 1(1 ~s I}
and (1-¢(2s0)= I if I~I ~s ',we have

(f- rt>, */((0 = (I - ¢(s~)) l(~)

= (1-¢(2s0)(1 + 1~12)-'/2(1-¢(sO)(1 + 1(12r/21(~)

=(I-¢(2s~))(I+I~12) '/2(1 'l-rt>,d 'lnO.

Now, the operator norm of the multiplier (1-1>(2.1" ))(1 + 1'1 2)-'/2, acting
on HP(D N

), is dominated by cs'. This follows from the study of the kernel
associated with the operator r (see [4,9 J), or from the Hormander
multiplier theorem for Hardy spaces (see [9, 14J). Hence, by Theorem 3.1,

III- rt>, *III HP(J)N) ~ c.qr'l- rt>, * ra/ll HP(J)N)

~ csawm(s, Iar, HP(D N
)).

Since rt>, *I is an entire function of exponential type at most 2.1' - I, the
theorem follows. I

4. THE JACKSON THEOREM FOR R N

Let I be a function in HP(R N
). The best approximation of I by entire

functions of exponential type at most .I' is defined by

£(.1', j; HP(R N
)) = Inf III- gil HP(RN ),

!:

where g is an entire function of exponential type at most s. Let m be a non
negative integer, t be a positive real number, and let h be a vector in R N

.

('41l49 .1-4
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'" .(m)L1;;' I(x, y) = ~ (_)11/ I . I(x +jh, y)
I~() )

(x is the variable in R N
, and y the one in R + ), and

W",(t, f, HP(R N)) = Sup 11,17,'III H/'(RV)'
Ihl '" I

THEOREM 4.1. If!Y. ~ 0, and if I'j" is in HP(R N), 0 <p < +00, then alsol
is in HP(R N), and E(s ',f, HP(R N)) ~ CS~ wm(s, I '(, HP(R N)).

Proal As in Theorem 1.1, decompose I as I= I..Ji. Then for every j
and s we have WII/(s, 1- 'Ii, HP( RN)) ~ CWII/(s, I 'I: HP( R N)). Since after a
suitable rotation I ~fj is in HP(D N

), the theorem follows from
Theorem 3.4. I

Remark. By means of Theorem 4.1 and the Hormander multiplier
theorem for Hardy spaces it is not difficult to prove that iff is in HP(R N),
then

WII/(t, f, HP(RN)) ~ Inf (III- gil HP(RN) + nl I "'gil HP(RN)) (4.2)
g

and

Inf (III- gil HP(R N ) +nl I-II/gil HP(RN ))
g

(4.3)

where g varies in HP(R N). The estimates (4.2) and (4.3) give two explicit
characterizations of the K-functional between the spaces HP(R N) and
I- m HP(RN). This is of some importance in the study of Besov-Lipschitz
spaces defined by means of the HP-metric. In particular, using Theorem 4.1
and estimates (4.2) and (4.3) it is possible to prove that if 0 < 8 < 1 and
0< q ~ +00, the quasi-norms

(i) IIIIIH/'(RNl+(t+x It- mli wm(t,f, HP(RN)W dtjt)'lq,

(ii) II!II HP(RN) +(rX

IsmB £(s, f, HP(RN)Wdsjs )'Iq,

(iii) I1II1 H/'(RN) + (t+x Iym(1 -B)lldmjdy'" 1(', Y )11 H/'(RN)I q dyjyrq

,
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are equivalent, and define the Besov~Lipschitz space (HP(R N),
rmHP(RN))o.q, i.e., the interpolation space, in the real method of inter
polation, between HP(R N) and J-mHP(R N) (see also [4,5,6,9, and 15]).

5. ApPROXIMATION BY RIESZ MEANS

Let <5 be a complex number with positive real part, and let m be a
positive integer. If/is in HP(R N), 0 <p < +00, the Riesz means {R~·m */}
of order <5 and type m are defined by

«(l-I~lm)+=Max{O,(l-I~lm)}). When m=2 these means are also
called the Bochner-Riesz means, and in this case it is well known that if
Re <5 is big enough, Re <5 > <5(p), then these means are bounded on HP(R N).
The "critical index" <5(p) is Nip - (N + 1)/2 when 0 < p ~ 1, and it is at
most (N-l)lllp-1/21 when l<p<+oo (see [10,11]. Actually, when
1 < p < +00 more precise results are known). It turns out that

and then by the Hormander multiplier theorem for Hardy spaces, for every
m and every <5 with Re <5 > <5(p), the Riesz means of order <5 and type mare
bounded on HP(R N). In other words, Riesz means of different types are
equivalent summability methods.

The approximation properties of the Riesz means of Fourier series and
integrals have been the subject of several investigations (for example, see
[1, 6]). In particular, in [5] Oswald proved that if/is in HP(R), 0 <p ~ 1,
and if <5 > lip - 1, then

II/- R~·2 *[11 HP( R) ~ CW I (s, f, HP(R))

(see also [12] for a related result on the approximation by Cesaro means
of functions in HP( U)). In this section we shall extend the above inequality
to Hardy spaces of several variables. As we shall see this result is a quite
easy consequence of the Jackson inequality in Theorem 4.1, and the
Hormander multiplier theorem for Hardy spaces.

THEOREM 5.1. If/is in HP( R N
), 0 < P < +00, m is a positive integer, and

if Re <5 is greater than the critical index <5(p), then for every s > 0 we have
11/- R~·m */11 HP(RN) ~ CWm(S, f, HP(R)N)).
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Proof Since the decomposition of a (tempered distribution) 1 in
HP(R N

) into a sum of (boundary values of) functions holomorphic in tube
domains of C" in Theorem 1.1 is "smoothness-preserving," we can suppose
without loss of generality that the Fourier transform off has support con
tained in (R + )N (i.e., f is in HI'(D N)). Let C/J, *1 be defined as in
Theorem 3.1, and let d be a (large) positive number. Then

Ilf- R:j·m *fll HI'(R'I

:::; Max { I, 2'/1' l}(ll (f- C/J ds *f) - R~·m * (f- C/J ds *n II HI'( R' I

+ II C/J ds *f- R~·m * C/J ds*{11 1I1'( RVJ

By Theorem 3.1 and the fact that the means {R~·m * f} are bounded on
HP(R N

), we have

11(/- C/J d , *fl - R~m * (/- C/J d , *f)IIUI',R"

:::; cIIf- C/J"s *fll WIR V )

:::;cwm(,~,f; HI'(R N
)).

Denote by h the vector (I, ..., I) ERN. Then

(1- (1_1~~lm),j )
= .. . S + d.(dsc. )(e2l[ish C_ I )m j"( ")

(e 2l[lh . S( _ I r1 If' • . (,

=n1(sc.)(LJ"l j j'(c.).- sli. . -

A moment's reflection shows that in (R + )N the function m is infinitely dif
ferentiable and satisfies the assumptions of the Hormander multiplier
theorem for Hardy spaces. Thus

II C/J ds *f- R~·m * C/J ds */11 HI'( R'I :::; ell LJ7;JII lIP( R'I

:::; cwmC~, f; HI'(R N
)),

and the theorem is proved. I
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